Calcolo delle Probabilità e Statistica

 

Probability and Statistics

 

Anno accademico 2018/2019

Codice attività didattica
MFN0341
Docenti
Prof. Federico Polito (Titolare del corso)
Prof. Bruno Toaldo (Titolare del corso)
Giuseppe D'Onofrio (Titolare del corso)
Corso di studio
Laurea in Matematica
Anno
2° anno
Periodo didattico
Secondo semestre
Tipologia
D.M. 270 TAF B - Caratterizzante
Crediti/Valenza
12
SSD attività didattica
MAT/06 - probabilita' e statistica matematica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Per gli appelli consultare il campo 'Note' della pagina del Corso
Prerequisiti
  • Italiano
  • English

Ottima conoscenza dell'analisi: calcolo, convergenze, serie, integrali (anche in più dimensioni).

 
 

Obiettivi formativi

  • Italiano
  • English

Coerentemente con gli obiettivi formativi del Corso di Studio previsti dalla scheda SUA-CdS, il corso si propone di fornire agli studenti una buona comprensione degli elementi fondamentali della moderna teoria del Calcolo delle Probabilità e della Statistica Matematica attraverso una rigorosa definizione dei termini e delle strutture principali, accompagnata dalla chiara discussione dei teoremi, alcuni dei quali con dimostrazioni complete, altri con indicazione delle linee essenziali della dimostrazione. L'allievo dovrà essere in grado di esporre, collegare e confrontare i principali concetti e risultati presentati nel corso e di dimostrare i teoremi fondamentali del programma d'esame. Dovrà saper risolvere problemi coniugando le conoscenze teoriche con il riconoscimento, la selezione o la costruzione di modelli, seguendo l'esempio fornito dalle esercitazioni.

 

Risultati dell'apprendimento attesi

  • Italiano
  • English

Definizioni precise di spazi di probabilità, regole elementari di calcolo, condizionamento ed indipendenza. Chiara nozione di variabile aleatoria, distribuzione ed eventuale densità; conoscenza del ruolo delle loro principali caratteristiche (media, varianza, momenti, funzioni generatrici). Capacità di utilizzare praticamente le distribuzioni congiunte. Conoscenza degli schemi e delle distribuzioni classiche, nel discreto e nel continuo. Saper discutere la legge debole dei grandi numeri. Conoscere risultati di convergenza. Saper discutere e presentare le linee essenziali della dimostrazione di un teorema del limite centrale. Saper utilizzare con disinvoltura le principali regole del calcolo. Risolvere problemi che di norma richiedono un'interpretazione dell'enunciato e la selezione o l'adattamento di modelli noti. Saper costruire stimatori, intervalli di confidenza e test di ipotesi. Capacità ad affrontare teoricamente problemi statistici riconoscendo i mezzi più idonei per lo studio teorico e pratico del problema.

 

Programma

  • Italiano
  • English

Prime definizioni di probabilità: legge empirica del caso, definizione classica e definizione soggettiva. Costruzione assiomatica dello spazio di probabilità: eventi, sigma-algebre, la probabilità, prime regole di calcolo e continuità della misura di probabilità. Indipendenza e condizionamento: formula delle probabilità totali e teorema di Bayes. Lemma di Borel-Cantelli. Variabili aleatorie: funzione di distribuzione e sue proprietà. Variabili discrete e variabili continue (Bernoulli, Binomiale, Geometrica, Binomiale Negativa, Ipergeometrica, Normale, Uniforme, Cauchy, Esponenziale, Gamma, Chi-Quadro, t di Student,...). Variabili aleatorie multidimensionali, indipendenza tra variabili aleatorie. Momenti. Funzione generatrice dei momenti e funzione caratteristica. Disuguaglianze notevoli: Markov e Chebyshev. Teoremi asintotici: convergenza in legge, convergenza in probabilità, convergenza quasi certa, limite normale della distribuzione binomiale, legge dei grandi numeri, teorema del limite centrale. Condizionamento
nel continuo.

Introduzione alla Statistica: il campionamento casuale con rimpiazzo. Costruzione dello spazio campionario e definizione di campione casuale estratto da una popolazione. Statistiche e momenti campionari. Media e Varianza dei momenti campionari. Caso particolare della media campionaria. Legame tra la media campionaria e la media della popolazione. Varianza campionaria e sua media e varianza. Distribuzione dei momenti campionari. Stima puntuale, definizione di stimatore. Metodi per la ricerca degli stimatori: metodo dei momenti e metodo della massima verosimiglianza. Proprietà degli stimatori: correttezza, errore quadratico medio. Stimatori corretti a varianza minima (UMVU). Teorema di Cramér-Rao. Proprietà asintotiche degli stimatori: correttezza asintotica, consistenza. Sufficienza. Teorema di fattorizzazione e teorema di Blackwell-Rao. Stima intervallare: definizione di intervallo di confidenza. Metodo della quantità pivotale per la ricerca degli IC. Test di ipotesi: definizione di ipotesi statistica, regione critica, errore di prima e seconda specie, potenza del test e ampiezza del test. Lemma di Neyman-Pearson. Ipotesi composte e rapporto generalizzato delle verosimiglianze. Modelli lineari generali: analisi della varianza, regressione. Stima nei modelli lineari generali: caso normale e caso scorrelato. Teorema di Gauss-Markov.

 

Modalità di insegnamento

  • Italiano
  • English

Le lezioni (56 ore - 7 CFU) ed esercitazioni (40 ore - 5 CFU) si svolgono in aula.

 

Modalità di verifica dell'apprendimento

  • Italiano
  • English

Prova scritta con voto. Prova orale con voto finale. L'esito positivo della prova scritta permette l'accesso alla sola prova orale immediatamente successiva. La prova scritta è costituita da esercizi ed è valutata in 30simi. La prova orale consiste in domande relative alla teoria, alle dimostrazioni e agli esercizi presentati nel corso. Il voto finale tiene conto sia della prova scritta che di quella orale.

 

Testi consigliati e bibliografia

  • Italiano
  • English

- A. Buonocore, A. Di Crescenzo, L.M. Ricciardi "Appunti di Probabilità", Liguori editore, 2011.

- P. Baldi "Calcolo delle Probabilità", McGraw-Hill, 2011.

- D. Piccolo "Statistica", Il Mulino, 2010.

- G. Grimmett, D. Stirzaker "Probability and Random Processes", Third Edition, Oxford Un. Press, 2001.

- G. Grimmett, D. Stirzaker "One Thousand Exercises in Probability", Oxford Un. Press, 2001.

- G. Casella, R.L. Berger "Statistical Inference", Duxbury Press, 2001.

- G. Casella, R.L. Berger, D. Santana "Solutions Manual for Statistical Inference", Second Edition,  2001.

- P. Billingsley "Probability and Measure", Wiley, 1995.

Un'introduzione attraverso modelli e applicazioni

 

Note

Modalità di verifica/esame:

It: Prova scritta con voto. Prova orale con voto finale. L'esito positivo della prova scritta permette l'accesso alla sola prova orale immediatamente successiva.

En: Written examination followed by oral examination. Only a positive result of the written examination allows the access to the corresponding oral examination.

 
Registrazione
  • Aperta
     
    Ultimo aggiornamento: 14/05/2019 13:27
    Campusnet Unito

    Location: https://www.matematica.unito.it/robots.html
    Non cliccare qui!