
NN 4 11-00

Rossella Cancelliere 1

Neural Networks NN 4 1

Multi layer feed-forward NN

Input
layer

Output
layer

Hidden Layer

We consider a more general network architecture: between the input and output 
layers there are hidden layers, as illustrated below. 
Hidden nodes do not directly receive inputs nor send outputs to the external 
environment.
FNNs overcome the limitation of single-layer NN: they can handle non-linearly 
separable learning tasks. 

FNN

Neural Networks NN 4 2

XOR problem 

x1 x2 x1 xor x2

-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

A typical example of non-linealy separable function is
the XOR. This function takes two input arguments with values in 
{-1,1} and returns one output in {-1,1}, as specified in the following
table: 

If we think at -1 and 1 as encoding of the truth values false and true, 
respectively, then XOR computes the logical exclusive or,
which yields true if and only if the two inputs have different 
truth values.

FNN



NN 4 11-00

Rossella Cancelliere 2

Neural Networks NN 4 3

XOR problem 

1

1

-1

-1

x1

x2

x1

x2

-1

+1

+1
+1

+1
-1

-1

-1

0.1

In this graph of the XOR, input pairs giving output 
equal to 1 and -1 are shown. 
These two classes cannot be separated using a line. 
We have to use two lines.
The following NN with two hidden nodes 
realizes this non-linear separation, where
each hidden node describes one of the two 
lines.

This NN uses the sign activation
function. The two arrows
indicate the regions where the 
network output will be 1. The output
node is used to combine the outputs
of the two hidden nodes. 

FNN

Neural Networks NN 4 4

Types of decision regions 

022110 >++ xwxww

022110 <++ xwxww

x1

1

x2 w2

w1

w0

Convex
region

L1L2

L3 L4

Network
with a single
node

One-hidden layer network that 
realizes the convex region: each
hidden node realizes one of the 
lines bounding the convex region1

1

1

1

1

x1

x2

1

FNN



NN 4 11-00

Rossella Cancelliere 3

Neural Networks NN 4 5

FNN NEURON MODEL
• The classical learning algorithm of FFNN is based on the 

gradient descent method. For this reason the activation function
used in FFNN are continuous functions of the weights, 
differentiable everywhere. 

• A typical activation function that can be viewed as a continuous
approximation of the step (threshold) function is the Sigmoid 
Function. The activation function for node j is:

• when                     ,         'becomes' the step function

0   with)(v
1

1
j >= −

+
a

e javϕ

-10   -8   -6   -4   -2     2    4    6    8    10 
jv

)( jvϕ
1

Increasing a

iyj
iw

yw
i

 node ofoutput   and  node to
  node fromlink  of weight  with

 vwhere

i

ji

ijij ∑=

FNN

∞→a ϕ

Neural Networks NN 4 6

Training: Backprop algorithm 
• The Backprop algorithm searches for weight values 

that minimize the total error of the network over the set 
of training examples (training set).

• Backprop consists of the repeated application of the 
following two passes:
– Forward pass: in this step the network is activated on one 

example and the error of (each neuron of) the output layer is 
computed.

– Backward pass: in this step the network error is used for 
updating the weights (credit assignment problem). This 
process is more complex than the LMS algorithm for Adaline, 
because hidden nodes are linked to the error not directly but 
by means of the nodes of the next layer. Therefore, starting at 
the output layer, the error is propagated backwards through 
the network, layer by layer. This is done by recursively 
computing the local gradient of each weight.

FNN



NN 4 11-00

Rossella Cancelliere 4

Neural Networks NN 4 7

Backprop 

• Back-propagation training algorithm

• Backprop adjusts the weights of the NN in order 
to minimize the network total mean squared 
error.

Network activation
Forward Step

Error propagation
Backward Step

FNN

i
w

ki

k

Neural Networks NN 4 8

Total Mean Squared Error
• The error of output neuron j after the activation of the 

network on the n-th training example                           is:           

• The pattern error is the sum of the squared errors of the 
output neurons:

• The total mean squared error is the average of the network 
errors of the training examples.

(n)y-(n)d(n)e jjj =

(n)eE(n)
nodeoutput  j

2
j2

1 ∑=

∑
=

=
N

1n
N

1
AV (n)EE

))(),(( ndnx

FNN



NN 4 11-00

Rossella Cancelliere 5

Neural Networks NN 4 9

Weight Update Rule

ji
ji w

-w
∂
∂

=∆
Eη

The Backprop weight update rule is based on the gradient 
descent method:  take a step in the direction yielding the 
maximum decrease of the network error E. This direction 
is the opposite of the gradient of E.

jijiji www ∆+=

FNN

0>η

Neural Networks NN 4 10

Weight Update Rule

ij yηδ=∆ jiwi
j y

v
=

∂
∂

jiw

ji

j

jji w
v

vw ∂
∂

∂
∂

=
∂
∂ EEUsing the chain rule

we can write:

j
j

E
v∂
∂

−=δ

i
,...,0

jijv yw
mi

∑
=

=Input of neuron j is:

Moreover defining the 
Error signal of neuron j
as follows:

Then from we get

FNN



NN 4 11-00

Rossella Cancelliere 6

Neural Networks NN 4 11

Weight update of output neuron

)v(')1(e
v
y

y
e

ev j
j

j

j

j

jj

ϕ−−=
∂
∂

∂
∂

∂
∂

−=
∂
∂

− j
EE

In order to compute the weight change           we need to know the error signal
of neuron j . 

There are two cases, depending whether j is an output or an hidden neuron.
If j is an output neuron then using the chain rule we obtain: 

jδ
jiw∆

jjj y-de =because

So if j is an output node then the weight          from  neuron i to neuron j is 
updated of:

jiw

ijji yw )(v')y-d( jj ϕη=∆

and )v( jϕ=jy

FNN

Neural Networks NN 4 12

Weight update of hidden neuron
If j is a hidden neuron then its error signal       is computed using the 

error signals of all the neurons of the next layer.
jδ

=
∂

∂

∂
∂

=
∂
∂

−=
j

j

jj
j v

y
y

-
v

EEδ

)v('
v
y

j
j

j ϕ=
∂
∂

.w
layernext in k 

kjk∑ δ

Using the chain rule we have:

∑=∆
layernext  ink 

kjkj
' w)v( δϕη iji yw

So if j is a hidden node then the weight          from  neuron i to neuron j is 
updated of:

jiw

Observe that

Then

FNN

and ∑ ∂
∂

∂
∂

=
∂
∂

layer   
next in k j

k

j y
v

y kv
EE

−=jδ )v(' jϕ



NN 4 11-00

Rossella Cancelliere 7

Neural Networks NN 4 13

Summary: Delta Rule

• Delta rule ∆wji = ηδj yi

=jδ
)y(d)v( jjj −′ϕ

∑′
layernext  ofk 

kjkj w)v( δϕ
IF j output node

IF j hidden node

)y1(ay)v(' jjj −=ϕwhere 

FNN

Neural Networks NN 4 14

Generalized delta rule
• If η is small then the algorithm learns the weights very 

slowly, while if η is large then the large changes of the 
weights may cause an unstable behavior with 
oscillations of the weight values.

• A technique for tackling this problem is the introduction 
of a momentum term in the delta rule which takes into 
account previous updates. We obtain the following 
generalized Delta rule:

n)(n)y()1n(wn)(w ijjiji ηδα +−∆=∆
α momentum constant

the momentum accelerates the descent in steady downhill directions.
the momentum has a stabilizing effect in directions that oscillate in time.

10 <≤α

FNN



NN 4 11-00

Rossella Cancelliere 8

Neural Networks NN 4 15

Other techniques:η adaptation

Other heuristics for accelerating the convergence of 
the back-prop algorithm through η adaptation:
• Heuristic 1: Every weight has its own η.
• Heuristic 2: Every η is allowed to vary from one 

iteration to the next.

FNN

Neural Networks NN 4 16

Backprop learning algorithm
(incremental-mode)

n=1;
initialize w(n) randomly;
while (stopping criterion not satisfied or n<max_iterations)

for each example (x,d)
- run the network with input x and compute the output y 
- update the weights in backward order starting from     

those of the output layer:

with           computed using the (generalized) Delta rule
end-for
n = n+1;

end-while;

jijiji www ∆+=
jiw∆

FNN



NN 4 11-00

Rossella Cancelliere 9

Neural Networks NN 4 17

Backprop algorithm
• In the batch-mode the weights are updated only 

after all examples have been processed, using 
the formula

• The learning process continues on an epoch-
by-epoch basis until the stopping condition is 
satisfied. 

• In the incremental mode from one epoch to the 
next choose a randomized ordering for 
selecting the examples in the training set in 
order to avoid poor performance.

∑∆+=
example  trainingx

x
jijiji www

FNN

Neural Networks NN 4 18

Stopping criterions
• Sensible stopping criterions:

– total mean squared error change: 
Back-prop is considered to have converged when the 

absolute rate of change in the average squared error per 
epoch is sufficiently small (in the range [0.1, 0.01]).

– generalization based criterion: 
After each epoch the NN is tested for generalization. If the 

generalization performance is adequate then stop. If this 
stopping criterion is used then the part of the training set 
used for testing the network generalization will not used for 
updating the weights.

FNN



NN 4 11-00

Rossella Cancelliere 10

Neural Networks NN 4 19

• Data representation
• Network Topology
• Network Parameters
• Training 
• Validation

NN DESIGN FNN

The following features are very important for 
NN design:

Neural Networks NN 4 20

• Data representation depends on the problem; generally 
NNs work on continuous (real valued) attributes. 

• Attributes of different types may have different ranges of 
values which affect the training process. Normalization 
may be used, like the following one which scales each 
attribute to assume values between 0 and 1.

for each value      of attribute    , where                     are 
the minimum and maximum  value of that attribute over 
the training set.

Data Representation 

i

i

minmax
min 
−

−
=

i

i
i

xx

ix i imax and mini

FNN



NN 4 11-00

Rossella Cancelliere 11

Neural Networks NN 4 21

• The number of layers and of neurons 
depend on the specific task. In practice this 
issue is solved by trial and error.

• Two types of adaptive algorithms can be 
used:
– start from a large network and successively 

remove some neurons and links until  network 
performance degrades.

– begin with a small network and introduce new 
neurons until performance is satisfactory.

Network Topology FNN

Neural Networks NN 4 22

• How are the weights initialized?
• How is the learning rate chosen?
• How many hidden layers and how many 

neurons?
• How many examples in the training set? 

Network parameters FNN



NN 4 11-00

Rossella Cancelliere 12

Neural Networks NN 4 23

• In general, initial weights are randomly 
chosen, with typical values between -1.0 
and 1.0 or -0.5 and 0.5.

Weights and learning rate FNN

•The right value of η depends on the 
application. Values between 0.1 and 0.9 
have been used in many applications.
•Other heuristics adapt η during the 
training as described in previous slides.

Neural Networks NN 4 24

• Rule of thumb: 
– the number of training examples should be at 

least five to ten times the number of weights of 
the network.

• Other rule:

Training

a)-(1
|W| N >

|W|= number of weights
a=expected accuracy on test set

FNN



NN 4 11-00

Rossella Cancelliere 13

Neural Networks NN 4 25

Applicability of FNN

Boolean functions:
• Every boolean function can be represented by a 

network with a single hidden layer
• but it might require exponential (in the number of 

inputs) hidden neurons.

Continuous functions:
• Every bounded piece-wise continuous function can 

be approximated with arbitrarily small error by a 
network with one hidden layer. 

• Any continuous function can be approximated to 
arbitrary accuracy by a network with two hidden 
layers.

FNN

Neural Networks NN 4 26

Approximation by FNN - theorem FNN

Let             be a nonconstant, bounded, and monotone-
increasing continuous function.

Let            denote the        -dimensional unit hypercube  

( )⋅ϕ

0mI 0m [ ] 01,0 m

Then, given any function and           there exist an 

integer      and sets of real constants            and       such that       

( )
0mICf ∈ 0>ε

1m iα ib ijw

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∑∑

==

01

0
11

1,
m

j
ijij

m

i
im bxwxxF ϕαK is an approximation of f,  i.e.

( ) ( ) ε<−
00

,, 11 mm xxfxxF KK



NN 4 11-00

Rossella Cancelliere 14

Neural Networks NN 4 27

FNNApproximation by FNN - comments

The sigmoidal function used for the construction of MLP 
satisfies the conditions imposed on ( )⋅ϕ

represents the output of a MLP with:

• input nodes and        hidden nodes

• synaptic weights        and bias       for hidden nodes        

• synaptic weights      for output nodes

0m 1m

ijw ib

iα

( )
0

,1 mxxF K

The universal approximation theorem is an existence 
theorem

Neural Networks NN 4 28

Approximation by FNN - comments FNN

The theorem states that a single hidden layer is 
sufficient for a MLP to compute a uniform approximation  
to a given training set represented by the set of inputs        

0
,1 mxx K

In 1993 Barron established the approximation 
properties of a MLP, evaluating the error decreasing 
rate as O(1/     ) 1m



NN 4 11-00

Rossella Cancelliere 15

Neural Networks NN 4 29

Applications of FFNN

Classification, pattern recognition:
• FNN can be applied to solve non-linearly separable 

learning problems.
– Recognizing printed or handwritten characters,
– Face recognition, Speech recognition
– Object classification by means of salient features 
– Analysis of signal to determine their nature and 

source

FNN

Regression and Forecasting
• FNN can be applied to learn non-linear functions 
(regression) and in particular functions whose inputs is a 
sequence of measurements over time (time series).


