Vai al contenuto pricipale
Oggetto:
Oggetto:

Calcolo delle Probabilità 2 (DM 270) - a.a. 2011/12

Oggetto:

Anno accademico 2011/2012

Codice dell'attività didattica
MFN0344
Docente
Prof. Laura Sacerdote (Titolare del corso)
Corso di studi
Laurea in Matematica
Anno
3° anno
Periodo didattico
Primo semestre
Tipologia
D.M. 270 - TAF B
Crediti/Valenza
6
SSD dell'attività didattica
MAT/06 - probabilita' e statistica matematica
Mutuato da
Mutuato dal corso di Calcolo delle Probabilità 2 (INT0411) del corso di laurea in Matematica per la Finanza e l'Assicurazione
Oggetto:

Sommario del corso

Oggetto:

Obiettivi formativi

Il corso si propone di sviluppare negli studenti le capacità necessarie per formulare modelli probabilistici di situazioni di interesse applicativo. Lo studio di processi stocastici e delle relative proprietà verrà finalizzata alla formulazione di modelli relativi a situazioni reali. Tra gli obiettivi del corso vi è lo sviluppo delle capacità necessarie per la formulazione e lo studio di semplici modelli probabilistici.

Oggetto:

Risultati dell'apprendimento attesi

Conoscenza delle principali metodologie utili per lo studio di alcune classi di processi stocastici a tempo e spazio discreti. Capacità di utilizzare le proprietà del Processo di Poisson in ambito modellistica. Sviluppo delle abilità necessarie per la formulazione di modelli stocastici di interesse per le applicazioni.

Oggetto:

Programma

Variabili aleatorie multivariate. Probabilità condizionate e valori attesi condizionati con applicazioni (tempo medio per il riapparire di un pattern).
Catene di Markov: equazione di Chapman Kolmogorov; classificazione degli stati, probabilità limite; applicazioni: cammino casuale, rovina di un giocatore.
Distribuzione esponenziale e processo di Poisson: principali proprietà ed esempi di applicazioni: problemi di code, di affidabilità. Processo di Poisson composto .
Catene di Markov a tempo continuo: processi di nascita e morte.
Moto Browniano e processi stazionari: distribuzione del massimo, tempo di prima uscita. Moto Browniano geometrico. Applicazioni in ambito finanziario: prezzo delle opzioni e modello di Black and Scholes. 

Nozioni di Copula e relative proprietà.

 

Jointly distributed random variables;  conditional probability and conditional expectation; examples (mean time for patterns)

Markov chains; Chapman Kolmogorov equation; classification of states; limiting probabilities; examples (random walk, gambler’s ruin).

 

The exponential distribution and the Poisson process; examples (queue problems; reliability problems); compound Poisson process.

Continuos-time Markov chains: birth and dead processes.

Brownian motion and stationary stochastic processes; maximum variable; geometric Brownian motion; example: Black and Scholes option pricing formula.

Copulas and their properties.

 

Oggetto:

Testi consigliati e bibliografia

Ross S.M. Introduction to probability models. Academic Press, 2003.

Oggetto:

Note

CALCOLO DELLE PROBABILITA' 2, MFN0344 (DM 270) , 6 CFU: 6 CFU, MAT/06, TAF B (caratt.), Ambito formazione modellistico-applicativa.

Modalità di verifica/esame (scritto, orale, scritto e orale congiunti, scritto e orale separati, voto o giudizio): Esame: orale comprende la soluzione di esercizi.

Oggetto:
Ultimo aggiornamento: 17/12/2014 09:50

Non cliccare qui!