Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Introduzione al Pensiero Matematico (DM 270) - a.a. 2012/13

Oggetto:

Anno accademico 2012/2013

Codice dell'attività didattica
MFN0352
Docenti
Prof. Ornella Robutti (Titolare del corso)
Dott. Erika Luciano (Esercitatore)
Prof. Francesca Ferrara (Titolare del corso)
Corso di studi
Laurea in Matematica
Anno
1° anno
Periodo didattico
Primo semestre
Tipologia
D.M. 270 - TAF B
Crediti/Valenza
6
SSD dell'attività didattica
MAT/04 - matematiche complementari
Modalità di erogazione
Tradizionale
Lingua di insegnamento
Italiano
Modalità di frequenza
Facoltativa
Tipologia d'esame
Orale
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Collegare la geometria e l’aritmetica delle scuole superiori con quelle universitarie Conoscere l’approccio di Hilbert alla geometria piana e quello di Peano ai numeri naturali Usare il metodo ipotetico-deduttivo in un contesto (geometria e numeri naturali) per produrre dimostrazioni.

Oggetto:

Risultati dell'apprendimento attesi

1) Comprendere il significato logico-matematico dei sistemi ipotetico deduttivi. 2) Comprendere dimostrazioni di enunciati in cui sono usati sia argomenti diretti sia dimostrazioni per assurdo. 3) Comprendere dimostrazioni per induzione di semplici proprietà numeriche. 4) Comprendere definizioni per ricorsione di semplici proprietà numeriche e di funzioni numeriche. 5) Comprendere quali ipotesi sono necessarie e sufficienti per dimostrare un teorema. 6) Comprendere il significato dei rapporti tra i vari sistemi geometrici sia secondo un’impostazione assiomatica (coerenza e indipendenza di assiomi, estensioni di sistemi) sia secondo un’impostazione con le trasformazioni, nonché i legami concettuali tra le due. 7) Comunicare in forma orale e scritta i concetti della geometria e dell’aritmetica e i loro metodi dimostrativi. 8) Produrre e comunicare dimostrazioni in situazioni problematiche ‘chiuse’ (con tesi esplicita) di geometria elementare e di aritmetica. 9) Produrre e comunicare congetture e dimostrazioni in situazioni problematiche ‘aperte’ (situazioni da esplorare in cui ipotesi e tesi sono prodotte dall’allievo) di geometria e di aritmetica elementare. 10) Usare il metodo per induzione per dimostrare semplici proprietà numeriche.

Oggetto:

Programma

 

 

Il metodo assiomatico in Euclide e Hilbert

I postulati di Euclide

Assiomi di incidenza, ordine, congruenza, continuità (varie forme), parallelismo

Geometria del triangolo, dei quadrilateri, teorema di Talete

I numeri naturali secondo Peano 

Formulazioni equivalenti dell’induzione

Dimostrazioni per induzione e definizioni per ricorsione 

 

Axiomatic method in Euclid and Hilbert

Euclid’s postulates

Axioms of incidence, order, congruence, continuity (different formulations), parallelism

Geometry of triangle, quadrilaterals, Talete theorem

Natural numbers according to Peano

Equivalent formulations of induction

Proof by induction and definitions by recursion

 

Testi consigliati e bibliografia

Oggetto:

Materiale per lezioni e esercitazioni: • Dispense del docente (disponibili su piattaforma Moodle). • Gli esercizi sono svolti in aula direttamente dal docente. Ulteriori esercizi sono lasciati a casa e sono affrontati nelle ore di tutoraggio (gli esercizi affrontati sono disponibili direttamente su piattaforma Moodle, quelli lasciati agli studenti con risoluzione annessa). • Forum di discussione, per annunci di carattere generale ma anche per apprendimento (accessibili in piattaforma). Bibliografia: Bonola, R., 1975: La geometria non euclidea. Bologna:Zanichelli (I ediz. 1906). Cederberg, J.N., 1989: A Course in Modern Geometries. New York: Springer-Verlag. Childs, L., 1983: ALGEBRA, un’introduzione concreta. Pisa: ETS Editrice; Coxeter, H.S.M., 1969: Introduction to Geometry, second edition. New York: Wiley & Sons. Coxeter, H.S.M., Greitzer, S.L., 1967: Geometry revisited. London: Random House. Di Sieno, S. & Levi, S., 2005: Aritmetica di base. Milano: McGraw-Hill. Euclide, 1970: Gli Elementi (traduz. italiana a cura di A. Frajese e L. Maccioni). Torino: UTET. Greenberg, M.J., 1974: Euclidean and Non-Euclidean Geometries, second edition. New York: Freeman & Company. Kline, M., 1991: Storia del pensiero matematico (traduzione italiana con appendice a cura di A. Conte). Torino: Einaudi (edizione originale del 1972). Millman, R.S. & Parker, G.D., 1991: Geometry. A metric approach with models, New York: Springer-Verlag. Moise, E.E., 1963: Elementary Geometry from an Advanced Standpoint. Reading (MASS): Addison & Wesley.



Oggetto:

Note

INTRODUZIONE AL PENSIERO MATEMATICO, MFN0352 (DM270), 6 CFU: 6 CFU MAT/04, TAF B (caratterizzante), ambito formazione teorica

Modalità di verifica/esame: test, esercizio scritto, orale.

Oggetto:
Ultimo aggiornamento: 17/12/2014 10:33

Non cliccare qui!