Vai al contenuto principale
Coronavirus: aggiornamenti per la comunità universitaria / Coronavirus: updates for UniTo Community
Oggetto:
Oggetto:

Introduzione alla Fisica Matematica

Oggetto:

Introduction to Mathematical Physics

Oggetto:

Anno accademico 2022/2023

Codice attività didattica
MFN0353
Docenti
Prof. Marco Ferraris (Titolare del corso)
Corso di studio
Laurea in Matematica
Anno
3° anno
Periodo
Secondo semestre
Tipologia
D.M. 270 TAF B - Caratterizzante
Crediti/Valenza
6
SSD attività didattica
MAT/07 - fisica matematica
Erogazione
Tradizionale
Lingua
Italiano
Frequenza
Facoltativa
Tipologia esame
Orale
Prerequisiti

Lo studente deve essere familiare con gli argomenti trattati negli insegnamenti di Algebra, Geometria, Analisi Matematica, Fisica Matematica e Fisica dei primi 5 semestri della Laure Triennale in Matematica.

The student should be familiar with the topics covered in the courses of Algebra, Geometry, Mathematical Analysis, Mathematical Physics and Physics of the first 5 semesters of the Bachelor's Degree program ("Laurea Triennale") in Mathematics

Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

Introduzione ai concetti geometrici (in particolare geometria differenziale, geometria riemanniana e strutture di contatto) che sono alla base delle teorie di campo e della descrizione di fenomeni fisiologici come il funzionamento della corteccia visiva, nonché delle equazioni che le descrivono; esempi di soluzioni che derivano da alcuni semplici problemi applicativi.

Introduction to the geometric concepts (in particular differential geometry, Riemannian geometry and contact structures) at the basis of field theories and the description of physiological phenomena such as the operation of the visual cortex, as well as the equations describing them. Examples of solutions derived from simple application problems.

Oggetto:

Risultati dell'apprendimento attesi

Saper trattare modelli di svariati fenomeni con metodi geometrici sviluppati per le teorie di campo.

Ability to approach theoretical models of various phenomena with geometric methods developed for field theories.

Oggetto:

Programma

Geometria delle varietà differenziabili e Riemanniane con applicazioni alla fisica matematica. Varietà differenziabili, campi vettoriali e tensoriali, equazioni differenziali. Algebra esterna, Gruppi di Lie e azioni su varietà. Varietà Riemanniane. Connessioni lineari, curvatura, fondamenti di relatività. Modelli cosmologici di Friedmann (cenni). Strutture di contatto e modelli geometrici in fisiologia della visione.

Geometry of differentiali manifolds and Riemannian manifolds with applications to mathematical physics. Manifolds, vector and tensors fields, differential equations. Exterior algebra. Lie groups and actions on manifolds. Riemannian manifolds. Linear connections, curvature, foundations of relativity. Friedmann cosmological models (elements). Contact structures and geometric models of visual cortex.

Oggetto:

Modalità di insegnamento

Lezioni frontali (48 ore)

Le lezioni vengono anche trasmesse tramite la piattaforma Webex in modalità sincrona e registrate simultaneamente  (vedi ulteriori informazioni nel campo Note).

Lectures, also available in streaming on Webex and recorded (see below for details).

Oggetto:

Modalità di verifica dell'apprendimento

Esame orale con voto in trentesimi.

L'esame consiste in un seminario, della durata di 45 minuti circa, su un argomento trattato nel corso, o strettamente legato ad argomenti trattati nel corso. L'argomento del seminario deve essere concordato con i docenti del corso ed il testo del seminario dovrà essere inviato ai docenti per email in formato pdf una settimana prima della data dell’appello.



Oral exam with mark.

The exam consists of a seminar, lasting about 45 minutes, on a topic covered in the course, or closely related to topics covered in the course. The topic of the seminar must be agreed with the lecturers of the course and the text of the seminar must be sent to lecturers by email in pdf format one week before the date of the exam.


 

Testi consigliati e bibliografia

Oggetto:

Manifolds, Tensor Analysis, and Applications [Marsden, Ratiu & Abraham]

Materiale didattico fornito dai docenti che verrà inserito nella pagina Moodle del corso.

Manifolds, Tensor Analysis, and Applications [Marsden, Ratiu & Abraham]

Teaching aids provided by the teachers will be inserted in the Moodle page of the course.



Oggetto:

Orario lezioniV

Registrazione
  • Aperta
    Oggetto:
    Ultimo aggiornamento: 15/06/2022 11:39

    Non cliccare qui!